计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (16): 191-198.DOI: 10.3778/j.issn.1002-8331.1907-0306
赵永猛,宓超
ZHAO Yongmeng, MI Chao
摘要:
针对外观尺寸相近,处于分类区间边缘的客车车型识别率不高的问题,提出通过识别车身限载数字字符进行车型分类的方法。由二值图结合字符的格式塔特征实现文字区域精定位,将分割出的数字字符使用神经网络进行识别,最终将识别的结果对应转换成相应客车类别以实现车型分类。将该算法在道口采集的三类、四类客车样本上进行实验,综合识别率为88.5%,相比基于外观几何特征的车型识别,识别率提高了将近10个百分点,且基于改进二值化算法(Psauvola)的字符识别相比使用其他二值化算法,识别率提升了一倍多。