计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (14): 240-249.DOI: 10.3778/j.issn.1002-8331.1904-0416
张明伟,李波,屈晓龙,郭盈
ZHANG Mingwei, LI Bo, QU Xiaolong, GUO Ying
摘要:
针对货运车辆在配送调度过程中产生大量碳排放的问题,建立模型将多种影响碳排放量的因素协同优化。模型中考虑了不同载重量的异质车队,两个节点之间有多条道路的柔性路径,以及车辆重量随卸货而减少的动态负载等因素,以碳排放量、行驶时间和行驶路程为优化目标,并加入了节点需求时间窗、根据速度变化划分路段、交接和卸货时间的约束。提出了一种混合蚁群算法,利用蚁群算法信息素强度更新方式保持群体记忆性,利用粒子群算法的快速收敛特性增加计算效率。通过随机数值算例的仿真优化与对比分析,验证了算法和模型的有效性。