计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (14): 45-51.DOI: 10.3778/j.issn.1002-8331.1908-0501
王光,林国宇
WANG Guang, LIN Guoyu
摘要:
针对传统DBSCAN算法需要人工输入[Eps]和[MinPts]参数,且参数选择不合理导致聚类准确率低的问题,提出了一种改进的自适应参数密度聚类算法。采用核密度估计确定[Eps]和[MinPts]参数的合理区间,通过分析数据局部密度特点确定簇数,根据合理区间内的参数值进行聚类,计算满足簇数条件时的轮廓系数,最大轮廓系数对应的参数即为最优参数。在4种经典数据集上进行对比实验,结果表明,该算法能够自动选择最优的[Eps]和[MinPts]参数,准确率平均提高6.1%。