计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (7): 24-29.DOI: 10.3778/j.issn.1002-8331.1909-0129
陆航,师智斌,刘忠宝
LU Hang, SHI Zhibin, LIU Zhongbao
摘要:
针对传统的协同过滤算法中单一评分相似性计算不准确的问题,提出融合用户兴趣和评分差异的协同过滤推荐算法。将TF-IDF思想运用到用户对标签的权重计算中,并使用指数衰减函数和时间窗口捕捉用户兴趣的变化;根据历史评分矩阵,充分考虑用户评分值差异、评判准则差异、影响力差异和项目影响差异等影响因子,定义了一种评分差异相似性度量算法;最后将用户兴趣相似性和评分差异相似性进行加权融合,获取更加准确的用户邻居,从而预测项目评分并进行推荐。在数据集Movielens的实验表明,提出的算法能有效提高推荐精度。