计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (4): 247-255.DOI: 10.3778/j.issn.1002-8331.1811-0045
胡青渝,刘广臣
HU Qingyu, LIU Guangchen
摘要:
针对真核生物DNA序列中蛋白质编码区的识别问题,提出基于深度置信网络(Deep Belief Network,DBN)的组合模型。通过信号处理技术对真核生物的DNA序列进行数值转换,并结合统计学知识提取转换后DNA序列的数值特征;利用随机森林对所提取的特征变量降维;用深度置信网络模型对DNA序列分类判别;根据短时傅里叶变换(Short Time Fourier Transform,STFT)技术对外显子区准确定位。在三个标准测试集上比较组合模型与传统[Logistic]回归模型、贝叶斯判别模型的判别效果,结果显示,深度置信网络组合模型的准确率和特异度等指标都明显优于[Logistic]回归模型和贝叶斯判别模型。