计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (3): 194-200.DOI: 10.3778/j.issn.1002-8331.1810-0300
李元祥,谢林柏
LI Yuanxiang, XIE Linbo
摘要: 为了融合深度图中不易受光照等环境因素影响的深度信息和RGB视频序列中丰富的纹理信息,提出一种基于深度运动图(Depth Motion Maps,DMMs)和密集轨迹的人体行为识别算法。利用卷积神经网络训练DMMs数据并提取高层特征作为行为视频的静态特征表示,使用密集轨迹来描述RGB视频序列的动态运动信息,将行为视频的静态特征和动态特征串联,作为整个视频的行为特征表示并输入到线性支持向量机(Support Vector Machine,SVM)进行识别。实验结果表明,在公开的动作识别库UTD-MHAD和MSR Daily Activity 3D上,该算法能够有效提取深度信息和纹理信息,并取得了较好的识别效果。