计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (2): 201-210.DOI: 10.3778/j.issn.1002-8331.1810-0130
宫睿,王小春
GONG Rui, WANG Xiaochun
摘要: 提出了可协调经验小波变换,并将其应用于多聚焦图像融合。经验小波变换(EWT)是一种自适应信号分解方法,具有比经验模态分解和传统小波分解更好的特性。其核心思想是通过构造自适应的滤波器实现对信号的自适应分解。但是若直接对两幅多聚焦图像分别进行EWT分解,因各自生成的经验小波互不相关,将出现分解所得对应子带不匹配的情况,影响融合图像的质量。针对这一问题,提出了一种可协调的经验小波变换(C-EWT),C-EWT分解下的两个多聚焦图像的对应子带是完全匹配的。基于此,利用C-EWT提出了一种新的多聚焦图像融合算法。每幅源图像经过C-EWT分解后,得到一个低频分量和多个高频分量; 对低频分量采用基于改进Laplacian能量和的阈值匹配选择与加权规则进行融合,对高频分量则采用局部Log-Gabor能量取大的融合规则;将融合之后的各子带分量进行重构得到融合图像。仿真实验表明:与其他六种融合算法相比,所提算法在融合聚焦区域、保留边缘和细节信息方面具有优势,融合图像具有更好的视觉效果,且客观评价指标与标准图像最为接近。