计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (23): 216-221.DOI: 10.3778/j.issn.1002-8331.1808-0247
贾晓莉,吴瑞,吴思颖
JIA Xiaoli, WU Rui, WU Siying
摘要: Web日志挖掘可以通过对用户访问模式进行分析,以获取用户的访问兴趣程度。目前,大多数的web日志挖掘是基于频率的,其挖掘的信息没有太大的价值。而提出的聚类技术是基于访问时间的,使用模糊向量表示用户浏览模式,记录用户是否浏览过该页面以及停留的时间。通过不同的聚类方法对用户的访问序列进行聚类分析。将模糊粗糙[k]-均值和夹角余弦相结合,提出了一种双层聚类技术,减少了对初始聚类中心的敏感性,并且通过一系列实验,论证了该聚类方法的可行性。而且,实验通过使用Davies-Bouldin指标来验证不同聚类方法的效果并进行比较。由于数据量大时,仍然存在算法效率低的问题,因此,使用MapReduce实现双层聚类的并行化,提高了聚类的效率。