计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (22): 53-59.DOI: 10.3778/j.issn.1002-8331.1808-0460
宋晓宇,高明海,赵明
SONG Xiaoyu, GAO Minghai, ZHAO Ming
摘要: 基本人工蜂群算法及其搜索策略侧重探索,为增强算法的开发能力,提出一种具有自适应搜索策略的混合人工蜂群算法。将目标函数值信息和最优解引导信息引入搜索策略,提出具有自适应机制、开发能力强的搜索策略;为防止“早熟”现象,利用三个不同随机食物源和高斯分布,设计出全局探索能力较强的搜索策略。将两个搜索策略在雇佣蜂阶段混合以平衡算法的探索与开发能力,在观察蜂阶段使用具有自适应机制、开发能力强的搜索策略以加快收敛。与基本及具有代表性的改进人工蜂群算法在20个标准测试函数中进行对比实验,结果表明所提算法具有更好的搜索能力和更快的收敛速度。