计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (20): 257-262.DOI: 10.3778/j.issn.1002-8331.1806-0004
曹浩,陈里里,司吉兵,任君兰
CAO Hao, CHEN Lili, SI Jibing, REN Junlan
摘要: 针对滚动轴承故障特征提取和分类需要进行有监督训练才能实现等问题,提出了一种基于奇异值分解(SVD)和时域统计特征分析并结合堆栈稀疏自编码器(SAE)以及Softmax分类器实现滚动轴承故障诊断方法。该方法利用Hankle矩阵对原始数据进行矩阵重构,利用奇异值分解和时域分析对重构后的故障信号进行特征预提取,融合两种特征并输入到堆栈稀疏自编码器中进行特征优化,将优化后的特征输入到Softmax分类器中进行分类识别。实验结果表明,3种工况下10类故障数据的识别准确率均在96%左右,且高于文中其他方法,因此该方法能有效地进行滚动轴承复杂信号的特征预处理以及分类。