计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (20): 139-144.DOI: 10.3778/j.issn.1002-8331.1806-0259
李敏,章国豪,曾建伟,杨晓锋,胡晓敏
LI Min, ZHANG Guohao, ZENG Jianwei, YANG Xiaofeng, HU Xiaomin
摘要: 为更有效地去除图像中的噪声,提出一种结合Inception模型的深度卷积神经网络(Convolutional Neural Network,CNN)图像去噪方法,以完整图像作为输入和输出,利用Inception结构密集提取原始图像和噪声多个不同空间尺度的特征,并采用多种调优策略,增强网络的整体学习能力。为避免梯度消失,使用线性修正单元(Rectified Linear Unit,ReLU)激活函数;为加速网络的训练,增加批量规范化(Batch Normalization,BN)操作;加入跳跃结构进行残差学习(Residual Learning,RL),提升网络的去噪性能。基于公共数据集BSDS300的三种高斯噪声等级实验结果表明,与其他图像去噪方法相比,模型在降低计算复杂度、提高收敛速度的同时,视觉效果更好,平均峰值信噪比(Peak Signal to Noise Ratio,PSNR)提升了约1.28 dB。