计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (20): 52-57.DOI: 10.3778/j.issn.1002-8331.1807-0058
王昕宇,罗可
WANG Xinyu, LUO Ke
摘要: 针对传统的LF蚁群聚类算法中存在的收敛速度慢,蚂蚁空载导致的资源浪费以及易陷入局部最优等问题,提出了一种蚁群改进算法。算法初期采用直接分配原则,直接将蚂蚁随机放在数据对象上,并生成随机的全局记忆,在聚类时负载蚂蚁移动受到全局记忆的指导,利用余弦相似度判断最相似的记忆中心,并向该记忆中心移动,全局记忆在一次迭代完成后更新。当蚂蚁拾起数据对象失败时,为了减少蚂蚁再一次的随机移动所带来的资源浪费,采用相异原则将蚂蚁移动到下一个数据对象上。改进的算法在UCI数据集Iris、Wine、Glass和Robotnavigation上进行验证,算法在保证原有算法准确率的基础上明显提高了收敛速度。