计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (15): 263-270.DOI: 10.3778/j.issn.1002-8331.1806-0197
• 工程与应用 • 上一篇
邱一豪,孟志青
QIU Yihao, MENG Zhiqing
摘要: 对具有时间属性的数据进行数据挖掘称为时态数据挖掘,用以发现数据在时间上的知识,当数据变化不规律时,如股票交易数据,就很难发现有价值的规律与规则。而神经网络具有并行、容错、可以硬件实现以及自我学习的优点,可作为股票分类预测应用的一种方法。通过将股票数据与时态型相结合,将股票数据转换成时态型股票数据,提出时态神经网络模型的分类方法,对收集的若干上市公司十年内的股票数据进行分析,构建了时态股票数据神经网络分类器对股票进行分类预测。经过实验验证,相比改进前的神经网络和支持向量机方法,该分类器具有更高的分类准确率。结果证明,这种时态数据神经网络模型对于多只股票的分类预测是非常有效的,可以很好地运用到股票市场的分类预测中。