计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (15): 193-197.DOI: 10.3778/j.issn.1002-8331.1810-0108
周晓宇,张龙波,王雷,李鑫翔
ZHOU Xiaoyu, ZHANG Longbo, WANG Lei, LI Xinxiang
摘要: 现有的可变区域拟合能量(RSF)模型基于初始轮廓内外灰度值的近似,较好地处理了图像分割中存在的图像灰度不均匀的问题。但当选择不恰当的初始轮廓时,由于RSF模型能量函数的非凸性质,极易陷入局部最小值。为了保证初始化的鲁棒性,提出了一种拟合函数优化的RSF模型。在曲线演化过程中,在演化方向相反的区域增加一个函数来交换曲线内外拟合值,使整条曲线沿物体的同侧边界演化。又将谱图理论引入该模型,使其能对大数据样本聚类且快速收敛至全局最优解。将改进模型应用于医学图像分割,实验结果表明该模型较RSF模型获得了更鲁棒的分割结果和较高的分割效率。