计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (8): 250-263.DOI: 10.3778/j.issn.1002-8331.1809-0183
张 鑫1,邹德旋1,肖 鹏1,喻 秋2
ZHANG Xin1, ZOU Dexuan1, XIAO Peng1, YU Qiu2
摘要: 针对粒子群优化算法(Particle Swarm Optimization,PSO)寻优速度慢、收敛精度不高且搜索结果波动性较大的缺点,提出了一种自适应简化粒子群优化算法(Self-Adjusted Simplified Particle Swarm Optimization,SASPSO)。在每次迭代过程中,粒子只受全局最优解影响,且加入按一定规律分布的锁定因子,令粒子受影响的程度有规律性。同时,利用锁定因子和当前粒子位置令惯性权重自适应配置,更有效地利用惯性权重对粒子群优化算法的影响。引入4种近期提出的改进粒子群算法同时搜索不同维度时的18个基准函数,与SASPSO的搜索结果对比,并使用T-test进行差异性分析。为了进一步分析算法性能,统计5个改进算法搜索100维函数达到期望值时的成功率与平均迭代次数。实验结果证明,SASPSO在无约束问题寻优中的收敛速度、寻优精度有了明显提升,且搜索结果异常值较少,波动性弱。将SASPSO应用于机床主轴结构参数优化问题,结果显示SASPSO优化性能更好。