计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (2): 21-27.DOI: 10.3778/j.issn.1002-8331.1809-0149
侯 屿1,2,秦小林2,彭皓月1,2,张力戈1,2
HOU Yu1,2, QIN Xiaolin2, PENG Haoyue1,2, ZHANG Lige1,2
摘要: 特征选择技术能有效解决维数灾难问题,许多搜索策略已经被应用到特征选择问题中。针对和声特征选择算法搜索能力低下的问题,提出了一种基于全局自适应调距的和声特征选择算法(HSFS-GPA)。将特征集的距离定义引入到特征选择问题中,在算法搜索过程中结合全局信息对随机产生的新和声进行调整,以一定概率减小候选和声与当前最优和声的距离来加快算法搜索速度,或减少候选和声与最差和声的距离以避免陷入局部最优;同时,采用竞争选择方案随时更新和声库全局信息,改进和声库的更新机制提高算法搜索质量。将HSFS-GPA与原始和声特征选择算法、粒子群算法和遗传算法进行对比实验,HSFS-GPA所选特征子集的大小比原始和声算法减少15%,子集评价值平均提高到0.98。实验结果表明,HSFS-GPA能在相同的条件下搜索到更优质的特征子集。