计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (1): 128-134.DOI: 10.3778/j.issn.1002-8331.1709-0029
周 健,田 萱,崔晓晖
ZHOU Jian, TIAN Xuan, CUI Xiaohui
摘要: 基于循环神经网络和注意力机制的Sequence-to-Sequence模型神经网络方法在信息抽取和自动摘要生成方面发挥了重要作用。然而,该方法不能充分利用文本的语言特征信息,且生成结果中存在未登录词问题,从而影响文本摘要的准确性和可读性。为此,利用文本语言特征改善输入的特性,同时引入拷贝机制缓解摘要生成过程未登录词问题。在此基础上,提出基于Sequence-to-Sequence模型的新方法Copy-Generator模型,以提升文本摘要生成效果。采用中文摘要数据集LCSTS为数据源进行实验,结果表明所提方法能够有效地提高生成摘要的准确率,可应用于自动文本摘要提取任务。