计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (20): 230-236.DOI: 10.3778/j.issn.1002-8331.1801-0173
王旭强,陈艳龙,杨 青,刘红昌
WANG Xuqiang, CHEN Yanlong, YANG Qing, LIU Hongchang
摘要: 在智能电网普及的大数据背景下,对电力数据进行精准的分析和预测对电网规划和经济部门的管理决策具有重要的指导意义,但大多数模型都只是在单一的时间尺度上进行研究。针对这一问题提出一种基于时序分解的后向传播算法的循环神经网络预测模型。通过对真实的居民用电消费数据以及外部因素数据统计处理,深入地分析了居民用电特点以及行为规律,并根据其数据的特征以及天气、节假日等外部因素对用户用电行为的影响建立预测模型,对用户未来时段的用电量进行预测。此外,考虑到居民用电消费数据的时序特征在不同时间尺度呈现不同的变化规律,通过时序分解建立预测模型来对用户用电行为的周期性和趋势性进行建模,并通过加权融合达到一起训练的效果,具有一定的协同性,提升预测精度。