计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (20): 20-27.DOI: 10.3778/j.issn.1002-8331.1807-0237
刘中强1,游晓明2,刘 升2
LIU Zhongqiang1, YOU Xiaoming2, LIU Sheng2
摘要: 针对蚁群系统(ACS)在解决TSP问题上存在易陷入局部最优和收敛速度较慢的问题,提出了一种改进的启发式蚁群算法。在迭代前期赋予伪随机因子较小的阈值,从而使蚂蚁能以较大的概率选择轮盘赌方式完成解的构建,扩大了解的搜索范围;同时通过引入迭代最优蚂蚁进行全局信息素更新,来进一步增加了解的多样性,使算法避免陷入局部最优。在迭代后期随着伪随机因子参数值变化幅度的加快,则用至今最优蚂蚁来取代迭代最优蚂蚁,以促进搜索进程很快的向最优解附近收敛,加快了收敛的速度。实验仿真结果表明改进后的算法在前期能够有效地跳出局部最优,并且在后期能够明显提升收敛速度。