计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (16): 55-58.DOI: 10.3778/j.issn.1002-8331.1706-0284

• 理论与研发 • 上一篇    下一篇

不含特殊子式的符号图的选择数

宫  辰,武丽芳,刘维婵,张  欣   

  1. 西安电子科技大学 数学与统计学院,西安 710071
  • 出版日期:2018-08-15 发布日期:2018-08-09

Choosability of signed graphs without certain minors

GONG Chen, WU Lifang, LIU Weichan, ZHANG Xin   

  1. School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
  • Online:2018-08-15 Published:2018-08-09

摘要: 针对符号图的列表点染色问题,证明了任何不含[K5]-子式或[K3,3]-子式的符号图的选择数至多为5,并且此处的上界5是不可再降低的,从而推广了Jin、Kang与Steffen发表于“European Journal of Combinatorics,2016,52:234-243”的关于符号平面图的对应结论。

关键词: 图论, 符号图, 列表点染色, 选择数, 子式

Abstract: The list coloring problem of the signed graphs is investigated in this paper, which proves that the choosability of every signed graph without [K5]-minor or [K3,3]-minor is at most 5, and this upper bound cannot be lowered anymore. This generalizes a corresponding result of Jin, Kang and Steffen on signed planar graph, which is published in “European Journal of Combinatorics, 2016, 52:234-243”.

Key words: graph theory, signed graph, list vertex coloring, choosability, minor