计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (11): 185-192.DOI: 10.3778/j.issn.1002-8331.1701-0220
祝章智1,2,3,黄风华1
ZHU Zhangzhi1,2,3, HUANG Fenghua1
摘要: 粒子群优化算法(Particle Swarm Optimization,PSO)应用于高光谱影像端元提取时,由于影像中存在端元的像元数所占比例极小且分布零散,导致粒子群的搜索空间破碎,存在收敛性能低、容易陷入局部最优解等缺陷。对粒子群的搜索空间进行优化,选择影像中纯净像元指数(Pixel Purity Index,PPI)较大的像元作为预选像元,然后对预选像元进行光谱聚类排序,将排序后的集合作为粒子群的搜索空间,优化了粒子的搜索空间。并在迭代过程中,充分利用粒子群的信息自适应地调整其系数,在缩小原始图像与反演图像的误差同时,增加体积约束,在提取端元时更好地保持其原有的形状。通过模拟数据和AVIRIS影像的实验表明该算法具有较好端元提取效果。