计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (3): 166-171.DOI: 10.3778/j.issn.1002-8331.1608-0122
黄伟婷1,赵 红2
HUANG Weiting1, ZHAO Hong2
摘要: 代价敏感属性选择问题的目的是通过权衡测试代价和误分类代价,得到一个具有最小总代价的属性子集。目前,多数代价敏感属性选择方法只考虑误分类代价固定不变的情况,不能较好地解决类分布不均衡等问题。而在大规模数据集上,算法效率不理想也是代价敏感属性选择的主要问题之一。针对这些问题,以总代价最小为目标,设计了一种新的动态误分类代价机制。结合分治思想,根据数据集规模按列自适应拆分各数据集。基于动态误分类代价重新定义最小代价属性选择问题,提出了动态误分类代价下的代价敏感属性选择分治算法。通过实验表明,该算法能在提高效率的同时获得最优误分类代价,从而保证所得属性子集的总代价最小。