计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (20): 56-60.DOI: 10.3778/j.issn.1002-8331.1705-0069

• 理论与研发 • 上一篇    下一篇

关于交换半环上一类矩阵的研究

张丽霞,邵  勇   

  1. 西北大学 数学学院,西安 710127
  • 出版日期:2017-10-15 发布日期:2017-10-31

Study on a class of matrices over commutative semirings

ZHANG Lixia, SHAO Yong   

  1. School of Mathematics, Northwest University, Xi’an 710127, China
  • Online:2017-10-15 Published:2017-10-31

摘要: 对半环上可逆矩阵的概念进行推广,给出了[e]-可逆矩阵的定义。通过探讨可逆矩阵与[e]-可逆矩阵之间的内在联系,给出了交换半环上[e]-可逆矩阵的等价刻画。同时,对交换半环上[e]-可逆矩阵的全体关于矩阵乘法构成的半群进行研究,给出了此类矩阵半群的分解定理,并证明了此类矩阵半群均存在极大子群,且所有极大子群的并是Clifford半群。

关键词: [e]-可逆矩阵, 极大子群, 次直积, Clifford半群

Abstract: This paper gives the definition of e-invertible matrices, which is a generalization of invertible matrices over semirings. Through exploring the interrelationships between invertible matrices and e-invertible matrices, the equivalent characterizations of e-invertible matrices over commutative semirings are given. Also, by studying the  semigroup of e-invertible matrices, the decomposition theorem of such matrices semigroup over commutative semirings is obtained. Finally, it proves that such matrices semigroup exists a maximal subgroup, and the union of all maximal subgroups forms a Clifford semigroup.

Key words: e-invertible matrices, maximal subgroup, subdirect product, Clifford semigroup