计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (19): 45-50.DOI: 10.3778/j.issn.1002-8331.1606-0030
陈 健,申元霞,纪 滨
CHEN Jian, SHEN Yuanxia, JI Bin
摘要: 针对动态优化问题(Dynamic Optimization Problem,DOP)中所面临的过时记忆和多样性丧失的挑战,提出了一种改进的多种群骨干粒子群优化算法(Multi-swarms Bare Bones Particle Swarm Optimization,MBBPSO)。通过设置环境勘探粒子及时检测环境的变化,避免了错误信息误导种群的进化方向;环境改变后,利用上一个环境搜索的信息初始化新的种群,提高MBBPSO快速追踪到当前环境的优秀解的能力;当种群陷入停滞时,采用新的进化方程以加强粒子的活性和多种群策略维持群体的多样性。仿真实验表明,MBBPSO在解决动态环境问题中具有较强的竞争力。