计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (17): 173-179.DOI: 10.3778/j.issn.1002-8331.1611-0018
卢向华,舒云星
LU Xianghua, SHU Yunxing
摘要: 提出一种基于改进人工鱼群算法优化支持向量机(SVM)的变压器故障诊断方法。首先对基本人工鱼群算法进行改进,引入柯西变异优化觅食行为,并在算法的迭代过程中利用鱼群搜索到的信息和[t]分布变异的特点,对劣质个体鱼进行消亡与重生,提高鱼群算法的寻优效率和求解精度。然后,利用改进的人工鱼群算法优化SVM的核函数参数及惩罚系数,使SVM分类器获得最佳的分类精度。最后采用决策导向无环图(DDAG)方法建立变压器故障诊断SVM多分类决策模型。通过仿真实验将提出的方法与网格搜索法Grid-SVM、GA-SVM、PSO-SVM比较,所建模型具有更高的诊断正确率。