计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (16): 68-73.DOI: 10.3778/j.issn.1002-8331.1612-0327
罗 凌1,杨 有1,马 燕2
LUO Ling1, YANG You1, MA Yan2
摘要: 在构建了学习者多维特征模型的基础上,设计了基于模糊C均值的在线协作学习混合分组算法。提取学习者多维特征分量,通过模糊C均值算法以学习风格、知识水平、学习目标和兴趣爱好为主要特征进行同质聚类,根据活跃度和性别特征进行异质聚类以实现混合性质分组。该算法将异质和同质分组相结合,既保证了学习风格、知识水平、学习目标和兴趣爱好具有相似性的学习者划分到同一组,同时考虑到了活跃度和性别差异对学习效果的影响,使得小组划分更加合理。实验表明,该算法优于传统分组方法,学习者的学习效果和学习满意度都有较大提升。