计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (14): 161-166.DOI: 10.3778/j.issn.1002-8331.1601-0447
廖胜平,徐 玲,鄢 萌
LIAO Shengping, XU Ling, YAN Meng
摘要: 软件缺陷预测有助于提高软件开发质量,保证测试资源有效分配。针对软件缺陷预测研究中类标签数据难以获取和类不平衡分布问题,提出基于采样的半监督支持向量机预测模型。该模型采用无监督的采样技术,确保带标签样本数据中缺陷样本数量不会过低,使用半监督支持向量机方法,在少量带标签样本数据基础上利用无标签数据信息构建预测模型;使用公开的NASA软件缺陷预测数据集进行仿真实验。实验结果表明提出的方法与现有半监督方法相比,在综合评价指标[F]值和召回率上均优于现有方法;与有监督方法相比,能在学习样本较少的情况下取得相当的预测性能。