计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (10): 264-270.DOI: 10.3778/j.issn.1002-8331.1610-0303
• 工程与应用 • 上一篇
王 蒙,樊 坤,翟亚飞,李心宁
WANG Meng, FAN Kun, ZHAI Yafei, LI Xinning
摘要: 在网络并行计算系统中,具有多处理机任务需求的多步骤调度是一类常见问题,为此提出一种混合了多处理机任务调度(Multiprocessor Task Scheduling,MTS)和作业车间调度(Job-shop Scheduling Problem,JSP)的调度模型,即多处理机任务作业车间调度(Multiprocessor Task Job-shop Scheduling Problem,MTJSP)。与传统MTS不同的是MTJSP的每项任务的完成都要经历多个步骤。首先对[m]台处理机加工[n]项任务的MTJSP调度问题建立数学模型,然后设计了一种混合粒子群优化(Hybrid Particle Swarm Optimization,HPSO)算法进行求解。算法的改进工作包括:设计出针对多处理机问题的解码策略;采用新的粒子更新方式;增加记忆库功能,以保证全局最优解的多样性;加入基于模拟退火的局部搜索功能。大量的仿真实验验证HPSO的性能,结果显示HPSO不但能够有效解决MTJSP问题,在求解经典JSP问题中也表现优良。