计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (9): 97-102.DOI: 10.3778/j.issn.1002-8331.1601-0405
古 平,王春元
GU Ping, WANG Chunyuan
摘要: 传统两阶段层次文本分类模型(THTC模型)是一种解决大规模层次文本分类问题的有效方法,但该模型的分类准确率仍然不是很高。为了缓解这个问题,提出了结合邻居辅助策略的两阶段层次文本分类模型(THTC-NA模型)。THTC-NA模型由搜索阶段和分类阶段组成。搜索阶段采用扁平策略从所有的叶子类别中选择与待分类文档最相关的[k]个类别作为候选类别集,这样可以大大减小分类阶段的搜索空间。分类阶段通过结合候选类别的祖先类别和兄弟类别的分类结果来帮助计算候选类别在分类阶段的结果。最后将搜索阶段的结果和分类阶段的结果融合起来共同决定待分类文档的目标类别。在数据集Newsgroups-18828上的实验表明,相对于THTC模型,THTC-NA模型对提高层次文本分类准确率有很大的帮助。