计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (24): 85-90.
谢 涛1,董 滔2
XIE Tao1, DONG Tao2
摘要: 工作流作业的调度效率是评价工作流管理系统整体表现的重要指标。众所周知,工作流作业的调度问题是一个NP-hard问题,而异构的计算环境使得问题更加棘手。分层基因算法LGA将启发式算法与GA算法相结合,利用GA算法来优化经过正向分层之后的工作流作业调度队列,显著地减少了工作流作业的执行时间。该算法根据作业的分层优先级来产生作业队列,把队列中的同层作业从整体上看作是一位基因来处理,有效地对算法的进化方向进行规划,并通过对杂交和变异流程的改进,增强算法的搜索深度和广度。实验表明,相比于其他混合GA算法,经LGA算法优化之后的工作流作业调度队列,所需的执行时间更少。