计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (22): 185-191.
何 晶,吴成茂
HE Jing, WU Chengmao
摘要: 针对模糊C均值算法未考虑图像邻域信息,导致其分割效果不好的不足,结合隐马尔可夫随机场和高斯核函数,提出核空间隐马尔可夫随机场模糊C均值聚类算法。引入隐马尔可夫随机场,在目标函数中引入像素的空间邻域信息,使得分割算法对噪声鲁棒性增强;引入核函数,将样本点非线性变换映射到高维特征空间,增强图像分割的抗干扰能力,保持图像的细节信息。对标准灰度图像添加噪声,用以验证算法的性能。视觉效果及分割图像的峰值信噪比均显示,改进算法具有更好的抗噪能力。