计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (18): 257-261.

• 工程与应用 • 上一篇    下一篇

基于自适应GWO的多UCAV协同攻击目标决策

魏政磊1,赵  辉1,韩邦杰2,周  欢1   

  1. 1.空军工程大学 航空航天工程学院,西安 710038
    2.空军驻石家庄地区军事代表室,河北 邯郸 056028
  • 出版日期:2016-09-15 发布日期:2016-09-14

Research on cooperative attack decision of Unmanned Combat Aerial Vehicles using self-adaptive Grey Wolf Optimization

WEI Zhenglei1, ZHAO Hui1, HAN Bangjie2, ZHOU Huan1   

  1. 1.College of Aeronautics and Astronautics, Air Force Engineering University, Xi’an 710038, China
    2.Military Delegate Section of China People’s Liberation Army Air Force Stationed in Shijiazhuang, Handan, Hebei 056028, China
  • Online:2016-09-15 Published:2016-09-14

摘要: 针对多架无人机相互协同攻击多个来袭目标的武器目标决策问题进行了研究。利用层次分析法(AHP)评估了空战能力指数和三维空战态势威胁指数的权重,针对协同攻击空战的分配原则,采用计算分配值的情况下提出了一种自适应搜索的灰狼求解算法,实现了武器目标攻击决策的求解。仿真表明,改进的GWO算法对决策方案的求解速度和求解质量与现有的粒子群算法(PSO)、蚁群算法(ACA)和遗传算法(GA)等相比均有所明显提高。

关键词: 目标威胁评估, 层次分析法, 协同空战, 多目标分配, 灰狼优化算法

Abstract: The target assignment decision-making for Cooperative Attack on Multiple Targets(CAMT) is investigated in this paper. Analytical Hierarchy Process(AHP) is applied to evaluate the weight values of air combat capability and 3D air combat situation for threats. There is a situation that for assignment principles of cooperative air combat, the assignment value is calculated. According to this circumstance, a self-adaptive Grey Wolf Optimization(GWO) is proposed to the CAMT problem. Simulation results show that the self-adaptive GWO proposed in this paper for solving the speed and quality of solutions outperforms significantly the existing Particle Swarm Optimization(PSO), Ant Colony Algorithm(ACA) and Genetic Algorithm(GA).

Key words: target threat assessment, analytical hierarchy process, cooperative air combat, multiple target assignment, grey wolf optimization