计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (17): 208-214.

• 图形图像处理 • 上一篇    下一篇

基于时空块协方差融合特征的火焰识别方法

蒋先刚,张盼盼,盛梅波   

  1. 华东交通大学 理学院,南昌 330013
  • 出版日期:2016-09-01 发布日期:2016-09-14

Flame recognition method based on temporal-spatial block covariance matrix blending feature

JIANG Xiangang, ZHANG Panpan, SHENG Meibo   

  1. School of Science, East China Jiaotong University, Nanchang 330013, China
  • Online:2016-09-01 Published:2016-09-14

摘要: 提出基于视频图像的[YCrCb]和[CMYK]空间下的颜色和纹理等时空融合特征的火灾区域探测方法,将划分为时空域方块中的帧间颜色、空间纹理分布和运动属性组合成协方差描述子融合特征,通过分析矩阵中每两特征方差对应的正、负样本关联值的分布而确定特征的选择,首次提出了通过对协方差矩阵黎曼距离的变化分析来调整特征选择和组合方式。协方差特征的度量分别采用黎曼流形接地距离、对数欧式距离和用支持向量机训练的分类器进行对比实验。实验结果证明基于协方差矩阵融合特征的火灾探测系统表现出较高的识别精度和运行效率。

关键词: 协方差矩阵, 测地线距离, 火灾探测, 特征选择

Abstract: A flame recognition method based on video image [YCrCb] and [CMYK] space’s color, texture and other spatial-temporal blending feature is proposed, it demarcates the video frames into spatial-temporal cubic block and integrates pixel’s transformed color space’s color component, spatial texture distribution and moving characteristics into integrated covariance matrix descriptor features. It first presents a feature selecting method by evaluating corrective value distribution corresponding each two correlation coefficient of a covariance matrix. In addition, it puts forwards a feature selection and feature assemble methods by analyzing changing trend of Riemannian Manifolds distance of covariance matrix. The flame features and classification methods are analyzed and compared by covariance metrics using Riemannian Manifolds distance, logarithmic Euclidean distance and support vector machine. It is demonstrated by experiments that  the flame detection system based on covariance matrix hierarchical feature has higher accuracy and recognition efficiency.

Key words: covariance matrix, geodesic distance, fire detection, feature selection