计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (17): 210-216.
陈金广1,江梦茜1,马丽丽1,徐步高1,2
CHEN Jinguang1, JIANG Mengxi1, MA Lili1, XU Bugao1,2
摘要: 针对多传感器环境下具有形状信息的扩展/群目标跟踪问题,提出了两种融合算法,即高斯逆韦氏并行PHD滤波算法和高斯逆韦氏序贯PHD滤波算法。新算法分别结合并行滤波和序贯滤波算法思想,能够对扩展/群目标的质心状态进行跟踪,对形状进行有效估计。高斯逆韦氏并行PHD滤波算法将各个传感器产生的量测集合并到一个量测集中,统一对量测集进行划分。在滤波更新阶段,对划分后的量测集进行扩维,从而在形式上将多传感器环境下的跟踪问题转化为单传感器环境下的跟踪问题。高斯逆韦氏序贯PHD滤波算法则先对各个传感器产生的量测集依次进行划分,再依次对每一个划分后的量测集进行滤波,从而达到融合多个传感器量测的目的。仿真结果表明该算法的可行性和有效性。