计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (16): 199-203.
刘万军,赵永刚,闵 亮
LIU Wanjun, ZHAO Yonggang, MIN Liang
摘要: 针对图像分割中模糊C均值算法(FCM)无法自动确定聚类中心,不考虑像素邻域信息的问题,提出一种结合[k]-means的自动FCM图像分割方法。该方法先由图像的灰度直方图确定聚类数目,使用一种改进的快速FCM方法产生初始聚类中心。即通过一步[k]-means算法对大隶属度灰度更新模糊聚类中心,同时仅对小隶属度灰度使用快速FCM?方法进行隶属度更新,迭代后得到初始聚类中心。利用改进隶属度的FCM算法进行最终聚类。实验表明,该方法获取初始聚类中心接近最终值,加速图像分割,并对噪声具有一定的鲁棒性。