计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (13): 255-258.
苗煜飞1,张霄宏1,2
MIAO Yufei1, ZHANG Xiaohong1,2
摘要: C4.5算法作为目前最具影响力的决策树分类算法,仍存一些不足之处。针对C4.5算法在对连续值属性离散化处理过程中比较耗时的缺点,基于Fayyad和Irani的边界定理,在连续属性离散化之后使用Gini指标代替信息熵对算法进行了化简。针对决策树算法中的过度拟合问题,基于Occam’s razor,采用再带入估计,对算法进行了改进。将上述思想应用于金融借贷数据,实验结果表明,改进的C4.5算法在保证准确率的前提下,执行时间平均降低8.74%,模型复杂度平均降低6.26%,表明了该算法的有效性。