计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (6): 254-259.

• 工程与应用 • 上一篇    下一篇

FAST-SR-UKF算法及其在组合导航系统中的应用

吕新知   

  1. 电子科技大学 电子科学技术研究院,成都 611731
  • 出版日期:2015-03-15 发布日期:2015-03-13

Theory and application of FAST-SR-UKF to integrated navigation systems

LV Xinzhi   

  1. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Online:2015-03-15 Published:2015-03-13

摘要: 为解决无迹卡尔曼滤波(UKF)算法在组合导航应用中遇到的系统模型不确定、系统噪声统计特性未知以及计算误差较大等问题,提出了模糊自适应强跟踪平方根无迹卡尔曼滤波(FAST-SR-UKF)算法,该算法不仅具有传统UKF的优势,而且包含如下特点:通过模糊自适应强跟踪模块,增强了系统对模型不确定性以及噪声统计参数未知的适应能力;利用平方根滤波的思想,提高了模糊自适应强跟踪无迹卡尔曼滤波算法的数值稳定性,改善了由于计算误差导致的滤波发散问题。仿真结果表明:相对于传统的UKF算法,该算法精度更高、鲁棒性更强。

关键词: 组合导航系统, 非线性滤波, 无迹卡尔曼滤波, 模糊逻辑

Abstract: To address the problems encountered in integrated navigation systems, such as errors introduced by system model uncertainties and unknown noise statistics, a new filtering algorithm which has been named the Fuzzy Adaptive Strong Tracking Square-Root Unscented Kalman Filtering (FAST-SR-UKF) is presented in this paper. The algorithm not only possesses the advantages of the conventional UKF, but also has merits of high filtering accuracy and good stability to system model uncertainties. Experimental results show that the proposed algorithm is superior to the conventional UKF.

Key words: integrated navigation systems, nonlinear filtering, unscented Kalman filters, fuzzy logical