计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (6): 103-107.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

交通流时间序列模式相似性度量法

弓晋丽1,彭贤武2   

  1. 1.长沙理工大学 交通运输工程学院,长沙 410114
    2.三一重工股份有限公司,长沙 410100
  • 出版日期:2015-03-15 发布日期:2015-03-13

Pattern similarity measurement of traffic flow time series

GONG Jinli1, PENG Xianwu2   

  1. 1.School of Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
    2.Sany Heavy Industry Co., Ltd, Changsha 410100, China
  • Online:2015-03-15 Published:2015-03-13

摘要: 针对交通流时间序列具有高维、高噪声的特性,设计了基于趋势变动、拟合优度和最小距离和百分比原则的联机分割算法用于时间序列维约简。对分割后的时间序列进行5元组分段线性表示,并据此定义五种常见的时间序列形状相似性距离。使用分层聚类算法分析它们在不同的交通流状态辨识中的效果,以此确定交通流时间序列的模式相似性度量方法。以上海南北高架东侧间部分路段固定线圈检测数据为例进行了实证分析,最终确定模式距离与欧氏距离组合方式为交通时序模式相似性度量的最佳方法。

关键词: 交通流, 时间序列, 模式相似性度量

Abstract: As high dimensional and high noise of traffic flow time series, the on-line segmented algorithm which is based on changing trends, goodness of fit and minimal distance/percentage principal is designed for time series dimension reduction. On the basis of segmentation results, the time-series is represented as 5 tuples piecewise linear form. Then five shape-
similarity distances of time-series are defined, and whose performance on discriminate of different traffic flow pattern are tested through cohesion hierarchical clustering. Taking the loop detector data from the eastern of Shanghai North-South expressway as an example, the method is verified. The combination of pattern distance and Euclidean distance is determined as the best method for pattern similarity measurement of traffic flow time series.

Key words: traffic flow data, time series, pattern similarity measurement