计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (3): 85-88.

• 网络、通信、安全 • 上一篇    下一篇

基于EPSO-RVM的网络入侵检测模型

黄  亮,吴  帅,谭国律,郑  军   

  1. 上饶师范学院 数学与计算机科学学院,江西 上饶 334001
  • 出版日期:2015-02-01 发布日期:2015-01-28

Network intrusion detection based on relevance vector machine optimized by particle swarm algorithm with elite election strategy

HUANG Liang, WU Shuai, TAN Guolv, ZHENG Jun   

  1. School of Mathematics & Computer Science, Shangrao Normal University, Shangrao, Jiangxi 334001, China
  • Online:2015-02-01 Published:2015-01-28

摘要: 为了提高网络入侵检测的正确率,提出一种精英选择策略粒子群算法(EPSO)优化相关向量机(RVM)的网络入侵检测模型(EPSO-RVM)。将相关向量机的参数编码成粒子,将入侵检测正确率作为粒子群搜索的目标,通过粒子群算法对参数优化问题进行求解,并引入精英选择策略增强粒子群算法的全局搜索能力,根据最优参数建立基于RVM的入侵检测模型,采用KDD99数据集对其性能测试,结果表明,相对于对比模型,EPSO-RVM较好地解决了相关向量机参数优化难题,提高了网络入侵检测的正确率。

关键词: 网络入侵, 相关向量机, 参数选择, 粒子群优化算法, 精英选择策略

Abstract: In order to improve the detection precision of network intrusion, this paper proposes a novel network intrusion detection model based on relevance vector machine optimized by particle swarm optimization algorithm with elite election strategy. The parameters of relevance vector machine are encoded into particles, and network intrusion detection rate is taken as the search goal of particle swarms, and then particle swarm optimization algorithm is used to solve the parameters optimization problem in which elite election strategy is introduced to improve the search performance. Network intrusion detection model is established based on the optimal parameters of relevance vector machine, and the simulation experiments are carried out on the KDD99 dataset. The simulation results show that the proposed model has solved parameters optimization problem of relevance vector machine and improved intrusion detection rate compared with reference models.

Key words: network intrusion, relevance vector machine, parameters selection, particle swarm optimization algorithm, elite strategy