计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (22): 154-157.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

结合SOM的关联规则挖掘研究

景  波,刘  莹,陈  耿   

  1. 南京审计学院 信息科学学院,南京 210029
  • 出版日期:2014-11-15 发布日期:2014-11-13

Research on association rule based on SOM

JING Bo, LIU Ying, CHEN Geng   

  1. School of Information Science, Nanjing Audit University, Nanjing 210029, China
  • Online:2014-11-15 Published:2014-11-13

摘要: 为了实现在海量数据中的审计线索的快速发现,通过数据挖掘FMA算法对被审数据和审计专家经验库进行关联规则快速提取;再利用自组织神经网络改良CLARANS算法对审计专家经验库抽取的规则划分出相似规则群;然后通过对被审单位关联规则集合和专家经验的相似规则群进行相对强弱、趋近率和价值率的比较,最终得到审计线索集合。

关键词: 关联规则挖掘, 自组织神经网络, 审计线索

Abstract: In order to achieve the audit trail of the massive data quickly found through data mining FMA algorithms to quickly extract trial data and audit expertise library association rules;re-use of self-organizing neural network improved CLARANS algorithm to extract audit expertise library divide a similar rule base rules;then by trial set of association rules and expert experience similar rules group relative strength, the approach value and the different rate of comparing the resulting set of audit trail.

Key words: association rule mining, Self-Organizing Map(SOM), audit trail