计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (21): 35-38.

• 理论研究、研发设计 • 上一篇    下一篇

一种基于萤火虫算法的模糊聚类方法

林睦纲1,刘芳菊2,童小娇1   

  1. 1.衡阳师范学院 计算机科学系,湖南 衡阳 421008
    2.南华大学 计算机科学与技术学院,湖南 衡阳 421001
  • 出版日期:2014-11-01 发布日期:2014-10-28

Fuzzy clustering algorithm based on firefly algorithm

LIN Mugang1, LIU Fangju2, TONG Xiaojiao1   

  1. 1.Department of Computer Science, Hengyang Normal University, Hengyang, Hunan 421008, China
    2.School of Computer Science and Technology, University of South China, Hengyang, Hunan 421001, China
  • Online:2014-11-01 Published:2014-10-28

摘要: 针对模糊C-均值聚类对初始值敏感、容易陷入局部最优的缺陷,提出了一种基于萤火虫算法的模糊聚类方法。该方法结合萤火虫算法良好的全局寻优能力和模糊C-均值算法的较强的局部搜索特性,用萤火虫算法优化搜索FCM的聚类中心,利用FCM进行聚类,有效地克服了模糊C-均值聚类的不足,同时增强了萤火虫算法的局部搜索能力。实验结果表明,该算法具有很好的全局寻优能力和较快的收敛速度,能有效地收敛于全局最优解,具有较好的聚类效果。

关键词: 萤火虫算法, 模糊聚类, 模糊C-均值聚类

Abstract: For local optimum and initial sensitive problems with fuzzy C-means clustering, a new fuzzy clustering algorithm based on firefly algorithm is proposed. By incorporating the capacities of local and global search of firefly algorithm and FCM, taking the optimal clustering center of firefly algorithm as the initialized value of the FCM, and then clustering analysis is processed by FCM. The new algorithm overcomes FCM trapped local optimum and being sensitive to initial value effectively, and enhances the capacity of local search of firefly algorithm. The experimental results show that the new algorithm not only has better global search capacity and faster convergence speed but also has better clustering efficiency.

Key words: firefly algorithm, fuzzy clustering, fuzzy C-means clustering