计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (18): 257-260.

• 工程与应用 • 上一篇    下一篇

稀疏特征选择在过程工业故障诊断中的应用

于春梅   

  1. 西南科技大学 信息工程学院,四川 绵阳 621010
  • 出版日期:2014-09-15 发布日期:2014-09-12

Sparse feature selection method for fault diagnosis of process industry

YU Chunmei   

  1. School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
  • Online:2014-09-15 Published:2014-09-12

摘要: 提出一种基于稀疏表达的特征选择方法,用训练样本的均值和方差组成优化算法的样本矩阵,测试样本采用与样本矩阵对应的指示向量,采用同伦算法求解优化问题。给出了算法的详细流程,并与传统的B距离法和小波包变换特征选择方法以及近年来常用的稀疏表达分类、稀疏投影保持和稀疏主元分析针对田纳西-伊斯曼过程进行故障诊断结果比较,结果表明所提出的方法故障诊断的误报率较低。

关键词: 稀疏表达, 特征选择, 故障诊断, 过程工业

Abstract: In this paper, a new sparse representation based feature selection method is proposed, in which the sample matrix is composed of the mean and variant of training sample, and testing sample is the index vector responding to sample matrix. Homotopy algorithm is used to solve the optimization problem. Traditional selecting methods based on wavelet package decomposition and Bhattacharyya distance methods, and recently used sparse methods, sparse representation classifier, sparsity preserving projection and sparse principal component analysis, are compared to the proposed method. Simulations show the proposed selecting method gives the improved performance on fault diagnosis with Tennessee Eastman Process data.

Key words: sparse representation, feature selection, fault diagnosis, process industry