计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (18): 215-219.

• 信号处理 • 上一篇    下一篇

基于alpha稳定分布的盲信号分离

任  静1,李维勤2,惠  鏸2   

  1. 1.西安航空学院 计算机工程系,西安 710077
    2.西安理工大学 自动化与信息工程学院,西安 710048
  • 出版日期:2014-09-15 发布日期:2014-09-12

Blind source separation based on alpha stable distributions

REN Jing1, LI Weiqin2, HUI Hui2   

  1. 1.Department of Computer Engineering, Xi’an Aeronautical University, Xi’an 710077, China
    2.School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
  • Online:2014-09-15 Published:2014-09-12

摘要: 针对当前重拖尾信号盲分离的存在问题,提出一种基于alpha稳定分布的重拖尾信号在线盲信号分离算法。离线计算标准alpha稳定分布的概率密度函数,建立标准函数库查找表;在线估计信号的alpha稳定分布的特征参数、对称参数和尺度参数,从而可以快速获得信号的概率密度函数;采用多层神经网络准确估计评价函数。仿真结果表明,该算法具有较好的分离性能和较低的计算复杂度。

关键词: alpha稳定分布, 独立分量分析, 盲信号分离, 重拖尾信号, 多层神经网络

Abstract: The convention Blind Source Separation(BSS) algorithms have a poor separating effect for the heavy-tailed signals. An online BSS algorithm for heavy-tailed signals is proposed based on the alpha stable distribution theory. The algorithm estimates the Probability Density Functions(PDFs) of the standard alpha stable distribution, and establishes the standard function library look-up table. It estimates on-line the signal characteristic parameter, symmetrical parameter and scale parameter, and therefore the PDF is obtained fast. The score function is obtained accurately by using the multilayer neural networks. The simulated results show that, the proposed algorithm has a well convergence property and a lower computational complexity.

Key words: alpha stable distribution, independent component analysis, blind source separation, heavy-tailed signals, multilayer neural networks