计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (14): 160-163.

• 图形图像处理 • 上一篇    下一篇

基于拉普拉斯分布模型的静止物体检测方法

杨海滨1,周治平1,2   

  1. 1.江南大学 物联网工程学院,江苏 无锡 214122
    2.江南感知能源研究所,江苏 无锡 214122
  • 出版日期:2014-07-15 发布日期:2014-08-04

Static objects detection method based on Laplacian distribution model

YANG Haibin1, ZHOU Zhiping1,2   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.Jiangnan Institute of Smart Energy, Wuxi, Jiangsu 214122, China
  • Online:2014-07-15 Published:2014-08-04

摘要: 针对监控视频中静止物体的检测,提出了一种基于拉普拉斯分布模型的检测方法。该方法首先改进[∑-Δ]背景建模方法,快速提取视频背景,构成初级背景,然后在初级背景中引入拉普拉斯分布模型,从而构成精确的自适应动态背景,最后比较初级背景与动态背景之间的差异达到检测静止物体的目的。实验结果表明,该方法能在标准视频数据库中有效地检测到静止行李,并对人群拥挤和光照变化等复杂场景有良好的检测效果。

关键词: [&sum, -&Delta, ]背景检测, 拉普拉斯分布模型, 静止物体检测

Abstract: In view of static objects detection in surveillance video, this paper proposes a method to solve above problem based on Laplacian distribution model. To begin with, the background modeling procedure of [∑-Δ] method is improved to abstract fast the background of video and form the primary background. And then, Laplacian distribution model is introduced to the primary background so that to abstract video self-adaptive dynamic background accurately which can reflect the background of video better. At last, the absolute difference between the primary background and dynamic background is used to detect the static objects. Experimental results prove the validity of this method to detect static luggage based on video standard databases and this method is robust in some complex scenes including crowded and illumination change.

Key words: [∑-Δ] background detection, Laplacian distribution model, static objects detection