计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (7): 212-216.

• 信号处理 • 上一篇    下一篇

基于压缩感知的自适应稀疏子脉冲成像方法

孙凤莲,张  群,罗  迎,顾福飞,朱  丰   

  1. 空军工程大学 信息与导航学院,西安 710077
  • 出版日期:2014-04-01 发布日期:2014-04-25

Imaging method based on compressed sensing with self-adaptive sparse subpulses

SUN Fenglian, ZHANG Qun, LUO Ying, GU Fufei, ZHU Feng   

  1. Institute of Telecommunication Engineering, Air Force Engineering University, Xi’an 710077, China
  • Online:2014-04-01 Published:2014-04-25

摘要: 基于空中运动目标回波信号的稀疏特性,提出了一种基于压缩感知(CS)的线性调频步进信号(SFCS)稀疏子脉冲自适应高分辨雷达成像方法。在对目标进行稀疏成像时,根据目标回波稀疏特性与发射信号子脉冲数之间的关系,建立相应的稀疏子脉冲动态闭环反馈系统,实现发射信号子脉冲数量的自适应调整;结合各脉冲簇中子脉冲的稀疏情况,建立相应的部分逆傅里叶变换基矩阵,并利用正交匹配追踪(OMP)算法对目标高分辨距离像(HRRP)进行重构处理,进而实现对目标的高分辨成像。仿真结果验证了该方法的有效性。

关键词: 雷达成像, 线性调频步进信号, 压缩感知, 自适应稀疏子脉冲, 正交匹配追踪法

Abstract: Based on the sparse characteristic of echoes, a method for adaptively high resolution radar imaging based on Compressed Sensing(CS) using sparse Stepped Frequency Chirp Signal(SFCS) is proposed. A dynamic closed-loop feedback system is built up according to the relationship between the sparsity of the target’s echoes and the number of subpulses, realizing the self-adaptive modulation of the transmittal. The corresponding partial inverse Fourier basis matrix is constructed using the sparsity of subpulses in the spectrogram. Via the algorithm of Orthogonal Matching Pursuit(OMP), it can reconstruct the High Resolution Range Profile(HRRP) of the target thereby yielding the target’s image with high resolution. Finally, simulation results validate the effectiveness of the proposed method.

Key words: radar imaging, Sparse Stepped Frequency Chirp Signal(SFCS), Compressed Sensing(CS), self-adapted sparse subpulses, Orthogonal Matching Pursuit(OMP)