计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (23): 132-136.

• 图形图像处理 • 上一篇    下一篇

基于SURF的UAV快速目标识别算法

贾  伟1,张  清2,席庆彪1,2,刘慧霞1   

  1. 1.西北工业大学 第365研究所,西安 710065
    2.西北工业大学 自动化学院,西安 710072
  • 出版日期:2013-12-01 发布日期:2016-06-12

Fast algorithm based on SURF for UAV target identification

JIA Wei1, ZHANG Qing2, XI Qingbiao1,2, LIU Huixia1   

  1. 1.No.365 Research Institute, Northwest Polytechnical University, Xi’an 710065, China
    2.School of Automation, Northwest Polytechnical University, Xi’an 710072, China
  • Online:2013-12-01 Published:2016-06-12

摘要: 针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能力快速地提取可能包含目标的ROI(Region Of Interesting)区域。在ROI区域和模板图像中提取SURF特征点,采用最近邻的匹配算法搜索匹配对,从而精确确定目标的位置。仿真结果显示,该算法可以明显地提高目标识别的实时性并具有相当的鲁棒性。

关键词: 目标识别, 无人机(UAV), 预处理, 感兴趣区域(ROI), 不变矩, 遗传算法, 加速稳健特征(SURF)

Abstract: In order to solve the problem of robust identification of target in the UAV reconnaissance image in real time, a fast recognition algorithm based on Speeded Up Robust Feature(SURF) is proposed in this paper. A similar matching function using moment invariant features is constructed as the fitness function in the genetic algorithm. Then the region of interest which may contain target is selected using genetic algorithm. Speeded up robust features are taken between the ROIs and the match pair is found using nearest matching algorithm. The match pair is used to determine the location of the target accurately. The result of simulation indicates that the algorithm is not only effective on enhancing the real-time ability of identifying target, but also robust.

Key words: target recognition, Unmanned Aerial Vehicle(UAV), preprocessing, Region Of Interesting(ROI), moment invariant, genetic algorithm, Speeded Up Robust Features(SURF)