计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (23): 86-90.
高雷阜,赵世杰,高 晶
GAO Leifu, ZHAO Shijie, GAO Jing
摘要: 针对支持向量机的参数优化缺乏理论支持,而SVM交叉检验法选取又较为费时的情况下,提出了基于人工鱼群算法的支持向量机参数优化选取算法,并以SVM分类预测准确率最大为优化原则,利用人工鱼群算法的较好并行性和较强的全局寻优能力,以实现最优目标并得到SVM的最优参数组合。数值实验结果表明:人工鱼群算法在SVM参数优化选取中具有更快的寻优性能,同时具有较高的分类准确率。该方法具有较好的并行性和较强的全局寻优能力。