计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (22): 190-193.
郑 伟1,张 丽1,田 华1,郝冬梅2,吴颂红2
ZHENG Wei1, ZHANG Li1, TIAN Hua1, HAO Dongmei2, WU Songhong2
摘要: 为了实现甲状腺肿瘤B超图像和核素图像的图像配准融合以及得到特征级图像配准所需要的特征区域,需分割出甲状腺、肿瘤及其周围组织。这类图像在形成过程中往往会产生斑点噪声使图像质量较差,且具有灰度对比度低和亮度分布不均匀等特点,提出一种基于各向异性扩散的归一化割分割法,将各向异性扩散模型引入到归一化割中,并通过调节模型参数来对甲状腺肿瘤B超图像进行去噪和边缘增强,优化了归一化割中轮廓线图和权值矩阵,在一定程度上避免了归一化割的过分割和欠分割,实验结果证明了该方法的可行性。