计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (19): 147-152.
成丽美,袁 伟,姚若侠
CHENG Limei, YUAN Wei, YAO Ruoxia
摘要: 基于Mark Fels和Peter J.Olver的活动标架理论,给出了用经典算法和改进的递归算法来构造活动标架和微分不变量的代数构造算法,并以一个李变换群为例演示了两种方法的构造过程。结果证明递归构造方法与经典的Maurer- Cartan方法相比较,不仅能够系统地应用于任意的变换群作用,也不要求一个slice的存在,且对于多参数的变换群来说,其递归构造方式使得相应的活动标架和微分不变量的构造过程更便捷,也容易实现。重要的是,相应的Maurer-Cartan形也被一步步地构造获得。所获得结果不仅是新的,且为微分不变量在签名曲线中的应用研究提供了基础理论支撑。