摘要: 在用机器视觉系统监测驾驶员的眼睛疲劳状态时,由于图像采集与图像处理消耗一定的时间,降低了系统的采样率,正常情况下,眼睛的眨动过程非常短暂,过低的采样率会漏掉眼睛某些关键状态的信息。因此直接对视频进行研究并提出用描述统计方法确定眼睛的最大睁开值,进而应用PERCLOS方法进行疲劳判定。对视频序列图像进行抽样,研究不同采样时间间隔对PERCLOS值的影响。通过六名测试者的数据表明:当PERCLOS值在15%附近时疲劳现象明显,随疲劳程度加深PERCLOS值升高,通过对视频序列图像抽样调整采样时间间隔,发现采样间隔在40 ms到120 ms之间时,PERCLOS值比较稳定,最大的相对误差为20.17%,采样间隔时间大于120 ms时PERCLOS值的波动幅度较大,最大相对误差达到54.07%,会影响疲劳判定结果。